
Solving Hyperbolic PDEs in Matlab

L.F. Shampine
Mathematics Department

Southern Methodist University, Dallas, TX 75275
lshampin@mail.smu.edu

May 31, 2005

1 Introduction

We develop here software in Matlab to solve initial–boundary value problems
for first order systems of hyperbolic partial differential equations (PDEs) in one
space variable x and time t. We allow PDEs of three general forms, viz.

ut = f(x, t, u, ux) (1)
ut = f(x, t, u)x + s(x, t, u) (2)
ut = f(u)x (3)

and we allow general boundary conditions. Solving PDEs of this generality is
not routine and the success of our software is not assured. On the other hand,
it is very easy to use and has performed well on a wide variety of problems.

Explicit central finite difference methods are quite attractive for hyperbolic
PDEs of this generality. We have implemented four: A two-step variant of
the Lax-Friedrichs (LxF) method [8], Richtmyer’s two-step variant of the Lax-
Wendroff (LxW) method [6], and the LxW method with a nonlinear filter [1] are
available for all three forms. A variant of the Nessyahu-Tadmor (NT) method [4]
is available for systems of form 3. The basic methods are generally recognized as
effective, but the variants implemented have some advantages. For instance, the
variant of LxF is dissipative and damps middle frequencies less than the usual
scheme. The nonlinear filter can be quite helpful in dealing with the oscillations
characteristic of LxW. The variant of NT is much better suited to the Matlab
problem solving environment (PSE).

An important part of this investigation was to devise a convenient way to deal
with general boundary conditions. In the case of the NT method, little attention
has been given to conditions other than periodicity, so in §4.2 we develop fully a
treatment of general boundary conditions for systems of equations. To be sure,
this is only one aspect of a user interface that we have crafted to make as easy
as possible to use whilst still capable of solving a large class of problems.

1

With methods that are at most of order two, even the graphical accuracy
appropriate to a PSE may require hundreds of mesh points. To accomplish this
with run times appropriate to a PSE, it is necessary in Matlab to vectorize the
computation. This has influenced our choice of algorithms and in particular,
dictated the variant of NT that we implemented. Along with a suitable user
interface and careful coding, we have managed to reduce run times dramatically,
a fact illustrated by examples in §5.

Our solver consists of two functions, setup and hpde, and five auxiliary
functions. The functions and a good many examples of their use are available
from the author. They run in Matlab version 6.5 and later. Several of the
examples are described briefly in this article and numerical results for three are
presented in §6. These examples include systems of one to three PDEs, all three
forms, and all the kinds of boundary conditions that we allow.

2 User Interface

We split the numerical solution of a system of PDEs into two parts. Every
computation begins with a call of the form

sol = setup(form,pdefun,t,x,u,method,periodic,bcfun,Neumann)

that defines the problem and how it is to be solved. It also initializes a solution
structure that can have any name, but is called here sol.

The PDEs are defined by form and pdefun. As stated in §1, the PDEs
can have three forms. When form is 1, pdefun is a function that evaluates
f(t, x, u, ux) and similarly when form is 3, it evaluates f(u). When form is 2,
pdefun is a cell array {flux,source} with flux and source being functions
that evaluate f(t, x, u) and s(t, x, u), respectively. In the common event of
s(t, x, u) being a constant vector, it can be supplied as source. pdefun must be
coded in a way that we illustrate for form 1: When called with a scalar T and
arrays X,U,U_x, pdefun must return an array V with column m (which is V(:,m)
in Matlab) equal to f(T,X(m),U(:,m),U_x(:,m)) for each m. The number of
columns is the same for all the arrays of this call, but this number varies from
one call to the next.

The integration starts at time t. The solution is computed on a fixed mesh
x in the interval [a, b]. The mesh points a = x1 < x2 < . . . < xM = b must
be equally spaced. (This is conveniently coded as linspace(a,b,M).) The ap-
proximate solution at time t is provided in the array u, which is to say that the
vector u(:,m) ≈ u(xm, t) for m = 1, . . . , M . The string method indicates which
of the four numerical methods discussed in §3 is to be used. The remaining
arguments specify boundary conditions, so they are discussed in §4.

The solution structure sol is initialized in setup and thereafter used as both
input and output for the solver hpde. Fields of particular interest are

• sol.t—current time

• sol.x—(fixed) mesh

2

• sol.u—approximate solution at current time

• sol.nstep—number of steps taken to reach current time

A call to hpde has the form

sol = hpde(sol,howfar,timestep)

Each call advances the integration from the current time t to t + howfar using
step sizes specified by timestep. If timestep is a positive scalar, the solver takes
steps of this size. If it is a function of the form dt = timestep(dx,t,x,u), the
solver calls this function at each step with the current approximation u to the
solution at time t, as well as the mesh x and its constant spacing dx. The
solver then takes a step of the size dt returned by the function. (In either
case the last step is shortened as necessary to produce an approximate solution
at t + howfar.) The two possibilities are illustrated by the example programs
discussed in §6. howfar and a scalar timestep can be changed at each call.

It is interesting to contrast our approach to a more general one coded in
FORTRAN. In §6 we present some numerical results for a model of heat transfer
formulated by W.E. Schiesser [7, §3.1]. In the system

u1,t + v u1,x = c1(u2 − u1) (4)
u2,t = c2(u1 − u2) (5)

the quantities v, c1, c2 are constant. The problem is set on [0, 1] and because
v > 0, appropriate initial–boundary conditions have the form

u1(x, 0) = f(x), u2(x, 0) = h(x), u1(0, t) = g(t)

Schiesser provides a collection of tools for solving PDEs by the method of lines
and in particular, subroutines for applying standard spatial difference operators.
The user has to write a program to formulate initial and boundary conditions,
apply suitable difference operators, and call upon standard software to integrate
the resulting ODEs. A great virtue of the approach is that it applies to all
types of PDEs. For hyperbolic PDEs like (4),(5), Schiesser uses the Runge–
Kutta code RKF45 [9] for time integration. The Schiesser example program
shows that it is much easier to formulate and solve (4),(5) with a solver for the
task rather than a set of tools. Schiesser computes results for t = 0 : 1 : 10
and compares them to analytical values for u1(1, t). The analytical expressions
involve special functions and integrals that must be evaluated numerically. He
specifies homogeneous initial values and four boundary functions g(t) that make
this task somewhat easier. An incompatibility of initial and boundary values
for some of the data sets results in a discontinuity of u1 that propagates to
the right. With v = 2.031 this discontinuity reaches x = 1 before he begins
measuring the error there. As illustrated in §6, the visualization tools of the
Matlab PSE quickly reveal where u1(x, t) has its most interesting behavior.

It is also interesting to contrast our approach with one that is more spe-
cialized and coded in Matlab. The onedimwave program of Stanoyevitch [12]

3

solves equations of the form

utt = c2(t, x, u, ux) uxx (6)

with Dirichlet boundary conditions. To solve such a problem with hpde, we
must write the equation as a first order system. It is straightforward to do this
with variables v1 = u, v2 = ux, v3 = ut. However, Stanoyevitch allows boundary
conditions of the form u(0, t) = A(t). Obviously v1(0, t) = A(t), but it also
follows that v3(0, t) = A′(t). The onedimwave program has the user specify
the number of equally spaced mesh points in an interval [0, L] and the number
of equally spaced points in a time interval [0, T]. A finite difference method
specifically for the wave equation is used to compute an approximation at all
points in space and time and return it as an array. For the numerical example
of §5, this array is 352 × 802. This approach to output is less satisfactory for
systems and finer meshes. Indeed, we solve this problem in twostrings as a
system of 3 equations and use 1000 mesh points instead of 352. Our approach
is to return answers only at specific times so as to reduce the storage required.
Also, because we allow the user to adapt the step size to the solution by means
of a timestep function, we do not know how many time steps will be required.

3 The Methods

The argument method of the setup function indicates which numerical method
is to be used. It is a string that can have four values, namely ’LxF’, ’LxW’,
’SLxW’, ’NT’. (The values are not case-sensitive.) In this section we discuss
briefly certain aspects of the variants of the Lax–Friedrichs (LxF) and Lax–
Wendroff (LxW) methods that we implement and review the Nessyahu–Tadmor
(NT) method. Some of the examples that accompany the solver allow all four
methods to be applied and many allow three. For instance, Pearson [5] develops
a perturbation solution to the PDEs

ut + uux + ηx = 0 (7)
ηt + [u(1 + η)]x = 0 (8)

for two sets of initial data, a periodic disturbance and an isolated disturbance,
both of size ε. He presents plots for the surface elevation η(x, 15) computed with
perturbation and numerical methods. Our example program Pearson solves
both problems with the PDEs written in form 3. The periodic problem is solved
easily by all the methods and 100 mesh points provides acceptable resolution.
The isolated disturbance is confined to |x| < 1/2. The discontinuous disturbance
splits and moves in both directions, reaching the neighborhood of x = ±15 by
t = 15. In Pearson this problem is solved on [−20, 20] with the undisturbed
values of zero imposed on the numerical solution at the boundaries. Because
the interval is much larger, the program uses 1000 mesh points for this problem.
LxW provides an acceptable solution, but η(x, 15) has an oscillation that is
not physical. The filtering of SLxW improves this. The first order LxF is

4

qualitatively correct, but the solution is rather damped. The second order NT
provides the best solution for this conservation law.

hpde is actually a driver that calls one of three functions depending on the
form of the PDEs. hpde1 and hpde2 solve PDEs of forms 1 and 2, respectively.
They implement both LxF and LxW and have smoothing of LxW as an option.
The formulas differ in obvious ways because the forms of the equations are
different and correspondingly the coding differs in obvious ways. hpde3 solves
PDEs of form 3 with NT. PDEs of this form are solved with the other methods
by treating the form as a special case of form 2 and using hpde2.

3.1 LxF and LxW

Richtmyer’s two-step Lax–Wendroff method [6] is indicated by the string ’LxW’.
It is of order two and dissipative of order four. This popular method is dispersive,
so we have provided an option to follow each step with a nonlinear filter to reduce
the total variation of the numerical solution. The smoothed LxW method is
specified by the string ’SLxW’. Engquist et alia [1] propose several nonlinear
filters that can be used for this purpose. Their algorithms are developed for
scalar problems and there is some discussion in the paper as to what should be
done for systems. Like the authors of [10], we found that applying the filter by
components was satisfactory. As discussed more fully in §5, we chose Algorithm
2.1 of [1] for hpde. When the solution is smooth, filtering has little effect, but
it can be counterproductive because it flattens features. It is by no means a
panacea, but we have found it to be surprisingly effective.

It is convenient to implement a two-step Lax–Friedrichs scheme along with
the two-step Lax–Wendroff scheme of Richtmyer. It is specified with the string
’LxF’. In this scheme a half step is taken with LxF on a staggered mesh. If a
second half step is taken with LxF, a solution is obtained on the original mesh.
Richtmyer’s LxW scheme is just a full step taken with this data and the leapfrog
method. The usual LxF scheme is not dissipative, but it is shown in [8] that
this variant is dissipative of order two. Moreover, this variant does not damp
middle frequencies as much as the usual scheme. As a monotone method, the
LxF scheme has attractive properties that make it useful when the solution is
not smooth.

3.2 NT

Nessyahu and Tadmor [4] have developed a simple and effective method for
solving a system of conservation laws (3) that is known as the NT method. They
consider problems with initial values on the whole real line, but later Levy and
Tadmor [3] considered how to treat inflow and outflow boundary conditions for
scalar problems posed on a finite interval. In §4.2 we develop fully a treatment
of general boundary conditions for systems of equations when a different form
of the method is used.

Nessyahu and Tadmor consider two variants of their scheme. Their numerical
experiments in [4] and those of later papers are all done with one variant, but

5

we find the other to be much better suited to our purposes. To understand
why and later to appreciate the boundary treatment, it will be necessary to
review the derivation of the NT method for a scalar equation. The method
approximates u(x, t) on a uniform mesh xm = m∆x. The cell Ip is the interval
|x−xp| ≤ ∆x/2 and its characteristic function, χp(x), has value 1 if x ∈ Ip and
0 otherwise. The solution is approximated at time tn = n ∆t and all x by the
piecewise constant function

w(x, tn) =
∑

wn
p χp(x) (9)

The quantity wn
p approximates the cell average of the solution

wn
p =

1
∆x

∫

Ip

w(x, tn) dx ≈ 1
∆x

∫

Ip

u(x, tn) dx

It can also be regarded as an approximation to the point value u(xp, t
n). The

approximate solution at tn+1 is computed on a staggered mesh which we define
for all p as xp+1/2 = xp+∆x/2 and similarly, Ip+1/2. Also, we write λ = ∆t/∆x.

The step to time tn+1 begins by improving the piecewise constant approx-
imation (9), a process called reconstruction. Information about the solution
from adjacent cells is used to form a piecewise linear approximation

w(x, tn) =
∑ [

wn
p +

w′p
∆x

(x− xp)
]

χp(x) (10)

This form preserves wn
p as the cell average and its interpretation as an approx-

imation to u(xp, t
n), so the question is what to use for the slope of the line.

Although there are other possibilities considered in [4], the simplest is

w′p
∆x

= MM

(
wn

p+1 − wn
p

∆x
,
wn

p − wn
p−1

∆x

)
(11)

Here MM is the MinMod limiter which can be defined for two scalar arguments
as

MM(a, b) =
1
2

(sign(a) + sign(b)) min(|a|, |b|)
Although the expression (11) shows clearly that we consider two natural ap-
proximations to the slope and choose one to reduce oscillation in the numerical
solution, we actually compute the scaled quantity w′p.

Let W (x, t) be the solution of equation (3) with W (x, tn) equal to the
w(x, tn) of (10). Integrating the equation over the rectangle Ip+1/2 × [tn, tn+1]
and a little manipulation provides an analytical expression for the cell average
of W (x, tn+1) in terms of the cell average of W (x, tn) and integrals of the flux
f along the sides of the rectangle:

1
∆x

∫ xp+1

xp

W (x, tn+1) dx =
1

∆x

∫ xp+1

xp

W (x, tn) dx

+λ

[
1

∆t

∫ tn+1

tn

f(W (xp+1, τ)) dτ − 1
∆t

∫ tn+1

tn

f(W (xp, τ)) dτ

]

6

Using the initial data (10) we can compute analytically the cell average at time
tn. On the cell Ip+1/2 the initial data is smooth (linear) except for a discontinuity
at xp+1/2. Nessyahu and Tadmor point out that if the step size satisfies a CFL
condition, the effects of the discontinuity do not reach the sides of the rectangle
by time tn+1. This is a crucial observation because it tells us that with an
appropriate restriction on the step size, the integrands in the integrals over the
sides of the rectangle are smooth enough that we can obtain a second order
approximation to the integral with the midpoint rule. For the right side of
the rectangle, this rule requires f(W (xp+1, t

n+1/2)). We can approximate the
argument by

W (xp+1, t
n+1/2) = W (xp+1, t

n) +
∆t

2
∂W

∂t
(xp+1, t

n) + . . .

= W (xp+1, t
n) +

∆t

2
∂f

∂x
(W (xp+1, t

n)) + . . . (12)

= wn
p+1 +

∆t

2
∂f

∂x
(wn

p+1) + . . .

One possibility is to proceed much as we did with the derivative of the solution,
namely use values Fp = f(wn

p) to approximate the partial derivative scaled by
∆x with

F ′p+1 = MM(Fp+2 − Fp+1, Fp+1 − Fp)

With these values we have

w
n+1/2
p+1 = wn

p+1 +
λ

2
F ′p+1 (13)

Nessyahu and Tadmor favor expressing the partial derivative of equation (12)
in terms of the Jacobian of f ,

W (xp+1, t
n+1/2) = wn

p+1 +
∆t

2
∂f

∂u
(W (xp+1, t

n))
∂W

∂x
(xp+1, t

n) + . . .

This leads to the approximation

w
n+1/2
p+1 = wn

p+1 +
λ

2
∂f

∂u
(wn

p+1) w′p+1 (14)

Nessyahu and Tadmor prove similar theoretical results for both variants, but
for reasons we take up in §5, we find (13) to be much more satisfactory for our
purposes.

Assembling these ingredients, the version of the NT algorithm that we im-
plement goes as follows: At time tn we begin with a piecewise constant approx-
imation (9). For all p, we calculate

w′p = MM(wn
p+1 − wn

p , wn
p − wn

p−1) (15)

evaluate Fp = f(wn
p), and then calculate

F ′p = MM(Fp+1 − Fp, Fp − Fp−1)

7

We form
wn+1/2

p = wn
p +

λ

2
F ′p

evaluate f(wn+1/2
p), and then calculate

wn+1
p+1/2 =

1
2

(
wn

p + wn
p+1

)
+

1
8

(
w′p − w′p+1

)

+λ
[
f(wn+1/2

p+1)− f(wn+1/2
p)

]
(16)

This provides a piecewise constant approximation at time tn+1 on cells Ip+1/2.
When we solve problems defined for all x, the next time step is not unduly
complicated by this staggered mesh, but there are obvious difficulties at the
boundaries when the interval in x is finite.

Nessyahu and Tadmor precede their derivation of the second order NT
method in [4] with the simpler derivation of a first order method. With the
interpretation that wn

p ≈ u(xp, t
n), this method is equivalent to the variant of

the Lax-Friedrichs method that we implement. The nice properties they prove
for the method augment those cited in §3.

4 Boundary Conditions

Our solver allows quite general boundary conditions. In this section we begin
with the design of the software and then discuss some of the details of implemen-
tation. In the case of the NT method, we must work out a suitable treatment.

General boundary conditions are specified by means of a function of the
form [uL,uR] = bcfun(t,uLex,uRex). At each step the solver computes ap-
proximations uLex and uRex to u(a, t) and u(b, t), respectively. As the names
suggest, they are computed by extrapolation from the interior. They are passed
to bcfun along with the current time t. bcfun defines the components of uL and
uR so as to impose the desired boundary conditions at x1 and xM , respectively.
In a simple case like an incoming flow for a particular component, bcfun would
return to the solver a specific value for this component. Similarly, if the flow
is out of the region for a particular component, bcfun would return the value
input for this component because it was computed using values interior to the
region and a one-sided formula. Swope and Ames [13] formulate the oscillation
of a string as it is traversed and wound on a bobbin as a pair of first order PDEs.
There are Dirichlet conditions at both ends of the interval because one end of
the string is fixed and the other moves in a prescribed way. Our example pro-
gram threadline solves the problem with parameter values corresponding to
Fig. 10 of [13]. Initializing the boundary values to values extrapolated from the
interior is accomplished easily in bcfun by choosing the same names for input
and output variables and then the Dirichlet conditions on the first component
are coded as

function [uL,uR] = bcfun(t,uL,uR)
uL(1) = 0; uR(1) = 0.1*sin(t*pi/2);

8

Using the current t and tentative approximations at the boundaries, a wide
variety of boundary conditions can be implemented by means of bcfun. This
way of handling boundary conditions gives the user great flexibility without
exposure to the details of the method and how the conditions are implemented.

Periodic boundary conditions are included in the general case, but extrapo-
lation is not the best way to treat this kind of boundary condition. Accordingly,
there is an optional argument periodic in setup that is set true to impose pe-
riodic boundary conditions and otherwise, false (or []). Implementation of
this special case is straightforward for all the methods because periodicity is
used to compute u(:,1) ≈ u(a, t) just as at an interior mesh point and its value
is assigned to u(:,M) by periodicity.

There is another kind of boundary condition that is common, but not in-
cluded in the general case, namely homogeneous Neumann boundary conditions.
If there are any conditions of this kind, the user specifies them with the optional
argument Neumann in setup. It is a cell array with two entries that specify the
conditions at the two ends of the interval. If ui(a, t)x = 0 for some compo-
nents i, the indices i are provided as a vector NeumannL. There may be no such
components, in which case this vector is the empty array []. Homogeneous
Neumann boundary conditions at the right end are similarly indicated with a
vector NeumannR. The argument Neumann is then {NeumannL,NeumannR}. There
may be no other boundary conditions, as with the shocktube example discussed
in §6, but if there are, they are imposed first and then the homogeneous Neu-
mann conditions. For instance, the traffic example discussed in §6 computes
default values at both ends by extrapolation and then imposes a homogeneous
Neumann condition at the right end.

4.1 LxF and LxW

The variant of the Lax-Friedrichs method that we implement involves a stag-
gered mesh, so it is convenient to code it as two half steps from values on the
mesh sol.x to values on the same mesh. The first half step is also the first half
step of the variant of the Lax-Wendroff method that we implement. Because
the mesh is staggered, we do not need to construct approximate solutions on the
boundaries at the first half step for either method. In the next half step these
explicit methods allow us to compute approximations at all interior points of
sol.x without consideration of values at the boundary. A common and effec-
tive technique for obtaining boundary values then is to extrapolate from interior
points or equivalently, use one-sided formulas. For both methods we compute
tentative approximations at the boundaries by linear extrapolation. The order
of convergence is not reduced for either method by extrapolation of this order.
The methods are dissipative, so the effects of the boundary treatment are local-
ized. This approach fits well with our design which passes tentative values to the
user for imposition of boundary conditions and it has proved quite satisfactory
in our experiments.

9

4.2 NT

An effective approach to imposing boundary conditions on other explicit, second-
order methods is to compute a tentative solution on the boundary using data
obtained by linear extrapolation of values at points interior to the region. Here
we propose something along these lines for the NT method. The integration be-
gins with input values w0

p that can be interpreted as u(xp, t
0) for p = 1, . . . , M .

Because the grid is staggered, we proceed by double steps, first taking a step
from an approximation in Case I and then a step from an approximation in Case
II.

Case I Suppose that we have a piecewise constant approximate solution
w(x, tn) on the cells Ip for p = 1, . . . , M . This case is distinguished from
the pure initial value problem discussed in §3.2 only by the boundary cells
I1 = [x1, x3/2] and IM = [xM−1/2, xM] being half the size of the interior cells.
In the reconstruction we can compute a (scaled) slope w′p in the usual way for
the interior cells, but we must proceed differently for w′1 because we do not have
the value wn

0 that appears in the recipe (15). Because the reconstruction uses a
constant slope on cells, linear extrapolation from the interior amounts to taking
w′1 = w′2. A good reason for proceeding in this way is that the value w′2 has
benefited from the application of the MinMod limiter to control oscillation in
the solution. Similarly, we take w′M = w′M−1. We can now apply the usual
formula to compute wn+1

p+1/2 for p = 1, . . . ,M − 1 and so arrive at a piecewise
constant approximation w(x, tn+1) of a form that we consider as a second case.

Case II Suppose that we have a piecewise constant approximate solution
w(x, tn+1) on the cells Ip+1/2 for p = 1, . . . ,M − 1. That is, w(x, tn+1) is a
constant wn+1

p+1/2 on [xp, xp+1]. In the reconstruction we can form slopes w′p+1/2

in the usual way for p = 2, . . . ,M − 2. At the boundaries we extrapolate from
the interior to define w′3/2 = w′5/2 and w′M−1/2 = w′M−3/2. We can now apply
the usual formula to compute wn+2

p for the interior cells p = 2, . . . , M − 1 . To
obtain an approximation w(x, tn+2) of the form considered in Case I, we must
develop a special formula to approximate the average of the solution on the half
cell [x1, x3/2], a value that we denote as wn+2

1 so as to correspond to Case I. We
proceed just as at an interior point, but now integrating the conservation law
over [x1, x3/2]× [tn+1, tn+2]. After a little manipulation we get

2
∆x

∫ x3/2

x1

W (x, tn+2) dx =
2

∆x

∫ x3/2

x1

W (x, tn+1) dx

+2λ

[
1

∆t

∫ tn+2

tn+1
f(W (x3/2, τ)) dτ − 1

∆t

∫ tn+2

tn+1
f(W (x1, τ)) dτ

]
(17)

Along the base of this rectangle the reconstruction is

W (x, tn+1) = wn+1
3/2 +

w′3/2

∆x
(x− x3/2) (18)

10

so the first integral on the right hand side of (17) is

2
∆x

∫ x3/2

x1

W (x, tn+1) dx = wn+1
3/2 − 1

4
w′3/2

In computing wn+2
2 we formed an approximation to the integral over the right

side of this rectangle that we can reuse here, namely

1
∆t

∫ tn+2

tn+1
f(W (x3/2, τ)) dτ ≈ f(wn+3/2

3/2)

Here the intermediate value is given by the usual formula

w
n+3/2
3/2 = wn+1

3/2 +
λ

2
F ′3/2

We proceed similarly on the left side, but there are some complications. The
approximate solution at x1 is given by (18) as

wn+1
1 = wn+1

3/2 − 1
2

w′3/2 (19)

The usual formula for the intermediate value

w
n+3/2
1 = wn+1

1 +
λ

2
F ′1 (20)

involves F ′1. Extrapolating from the interior, we take F ′1 = F ′3/2. With this in-
termediate value we can approximate the integral on the left side of the rectangle
in the usual way,

1
∆t

∫ tn+1

tn

f(W (x1, τ)) dτ ≈ f(wn+3/2
1)

With approximations to all the integrals on the right hand side of (17), we can
now approximate the cell average on the left hand side by

wn+2
1 = wn+1

3/2 − 1
4

w′3/2 + 2λ
[
f(wn+3/2

3/2)− f(wn+3/2
1)

]
(21)

In summary, we deal with the left boundary by defining two values by ex-
trapolation from the interior, w′3/2 = w′5/2 and F ′1 = F ′3/2. With them we can

evaluate wn+1
1 using (19), then w

n+3/2
1 using (20), and finally wn+2

1 using (21).
The equivalent at the right end is to define by extrapolation w′M−1/2 = w′M−3/2

and F ′M = F ′M−1/2. With them we can evaluate

wn+1
M = wn+1

M−1/2 +
1
2

w′M−1/2

then
w

n+3/2
M = wn+1

M +
λ

2
F ′M

11

and finally

wn+2
M = wn+1

M−1/2 +
1
4

w′M−1/2 + 2λ
[
f(wn+3/2

M)− f(wn+3/2
M−1/2)

]

With these values we have a piecewise constant approximation of the form con-
sidered in Case I. The vector wn+2

1 is a tentative approximation to u(x1, t
n+2),

so we supply it and the corresponding approximation at the other end of the
interval to bcfun. We replace the tentative values with those returned from
bcfun to complete Case II and advance the integration to tn+2.

5 Vectorization

We began this project by drafting solvers that advanced the solution one mesh
point at a time. With hundreds of mesh points, LxF and LxW were slow in
Matlab and NT was impractical. The quadrature codes of Matlab require
that the integrand be evaluated at all points of a mesh in a single call. Something
similar is very advantageous when solving boundary value problems for ODEs.
With this in mind, we suspected that requiring users to evaluate the PDEs at
all mesh points in a single call could be used to speed up the solvers greatly, and
so it turned out. It is generally not hard to vectorize the evaluation of a system
of PDEs and even if it is, we found that the big advantage lies in vectorizing
the solver and evaluating the PDEs at all mesh points in one call rather than
vectorizing the evaluation of the PDEs per se. As we began rewriting the solvers,
vectorization caused us to reconsider some of the algorithms.

To illustrate the effects of vectorization, we prepared a version of the solver
for PDEs of form 1 that uses LxF and does the array computations one column
at a time. In particular, it evaluates the PDEs one mesh point at a time. All the
run times reported here were obtained with Matlab v. 7.0.0 and a moderately
fast PC. Run times depend strongly on the circumstances, so the values we give
are most useful as a rough guide to relative costs. To measure run time we
place tic and toc around a loop that calls setup and hpde 10 times and divide
the elapsed time reported at the end of the run by 10. It is better practice to
solve the system (7), (8) in the conservative form 3, but to study the effects of
vectorization, we solved it with the PDEs written in form 1. In terms of the
vector V = (u, η)T , the function can be coded as

function F = pdes(t,x,V,V_x)
F = zeros(size(V));
F(1,:) = - (V(1,:).*V_x(1,:) + V_x(2,:));
F(2,:) = - (V_x(1,:).*(1 + V(2,:)) + V(1,:).*V_x(2,:));

A conventional coding of this function would evaluate the PDEs one mesh point
at a time. In our design they must be evaluated for all the mesh points in a
single call, which can be coded as

12

function F = spdes(t,x,V,V_x)
F = zeros(size(V));
for m = 1:size(V,2)

F(1,m) = - (V(1,m)*V_x(1,m) + V_x(2,m));
F(2,m) = - (V_x(1,m)*(1 + V(2,m)) + V(1,m)*V_x(2,m));

end

We see that only a few changes are needed to vectorize the computation. All
the input arrays have the same number of columns, but this number can vary
from one call to the next. Notice how the preallocation of storage for F accounts
for this. Solving the isolated disturbance problem of the Pearson example with
the vectorized solver and pdes took 4.27s. Replacing pdes with spdes increased
the average run time to 4.41s. The PDEs are simple and the JIT accelerator is
doing a good job of evaluating the function efficiently, so the penalty is not at all
large. On the other hand, the version of the solver that does array operations
a column at a time and evaluates the PDEs one mesh point at a time took
82.18s! In §6 we solve a traffic model of one PDE that arises in form 1. With
vectorization this problem is solved with LxF in 0.44s and without, in 13.08s.
The kind of difference in run time seen in these two examples is of the utmost
importance in a problem solving environment.

In §2 we discussed a Matlab program that Stanoyevitch wrote to solve (6)
with Dirichlet boundary conditions. He coded onedimwave to take advantage of
array operations and requires the user to vectorize evaluation of the boundary
functions. Example 12.6 of [12] studies the propagation of a wave through two
strings of different density. Stanoyevitch notes that a “very large” number of
mesh points and time steps are needed to deal with discontinuities in the data
and even then, there are small oscillations in the solution at the end of the run.
We found that the average time spent in onedimwave was 20.86s. We solve an
equivalent set of 3 PDEs of form 1 in the twostrings program. Using the same
mesh points and constant time step, the computation took an average of 0.44s
using LxF, 0.46s using LxW, and 0.66s using SLxW. Evidently our approach
to the task was very advantageous. Indeed, it is so much faster that we specify
1000 mesh points in twostrings and just reduced this to 352 for the comparison
with onedimwave.

We tried two of the nonlinear filters proposed in [1], namely Algorithms
2.1 and 2.2. An important distinction is that the first makes only one pass
over the data and the second may make repeated passes. One difficulty with
implementing these filters efficiently is that we apply them by components and
they treat components differently. On the other hand, all our examples involve
at most 3 equations. It is not clear to us how to vectorize the application of
these filters. Though Algorithm 2.2 sometimes provided a better solution, we
found Algorithm 2.1 to be satisfactory and so did the authors of [10]. Because
Algorithm 2.1 proved to be remarkably faster in Matlab, we chose it for hpde.

In §3.2 we sketched the derivation of two variants of the NT method. The
user must supply a function for f(u) in either case, but if the variant (14) is
adopted, a function for the Jacobian must also be supplied. This inconvenience

13

is already a strong argument in favor of the variant (13) for a problem solving
environment. Vectorizing functions is critical to the efficient solution of PDEs
in Matlab and this is much more complicated when a Jacobian matrix has to
be evaluated at all the mesh points and the result returned as a multidimen-
sional array. One reason Nessyahu and Tadmor favor (14) is that it requires
fewer applications of the MinMod limiter. However, this limiter can be coded
efficiently in Matlab as a single command, even for systems: If a is an array
with each column corresponding to a vector solution at a mesh point and b is a
similar array, the MinMod operation can be applied to corresponding columns
of a and b with

v = 0.5*(sign(a) + sign(b)) .* min(abs(a),abs(b));

Array operations and other built-in commands execute much faster in Matlab
than equivalent scalar operations, so evaluation of the MinMod limiter is inex-
pensive in this computing environment. Considering all these issues, the variant
(13) was clearly the better choice for hpde.

6 Numerical Examples

Many examples are available from the author along with the solver. One pur-
pose they serve is to provide examples of vectorizing the evaluation of PDEs.
Typically an example has a menu of methods and often a menu of forms for the
PDEs. As illustrated here, the examples range from 1 to 3 PDEs and include
all forms of the PDEs. All the kinds of boundary conditions that we allow are
also represented.

Many texts study models of traffic flow. After discussing such models
Gustafson [2, p. 266 ff.] sets the computational Problem B.9 that we solve
in the traffic program. The PDE arises in form 1, namely ρt + c(ρ)ρx = 0
with c(ρ) = 76.184 − 17.2 log(ρ). The initial density ρ(x, 0) has a sharp peak.
Gustafson reports that the leapfrog method and two codes based on the Lax-
Wendroff method “. . . failed to produce adequate backward movement of the
traffic bulge.” traffic reproduces the figure on p. 393 that was computed
using the method of characteristics. The figure shows ρ(x, 0) on [0,1] and the
shock that has developed at t = 0.009. The interval is big enough that the peak
does not reach the left boundary by this time, so we specify a homogeneous
Neumann boundary condition at x = 1 and no boundary condition at x = 0. It
is convenient to write a function that evaluates c(ρ) for an array rho and then
use it to evaluate the PDEs and a time step that satisfies a CFL condition of
0.9:

function v = c(rho)
v = 76.184 - 17.2*log(rho);

function F = pdefun(t,x,rho,rho_x)
F = - c(rho).*rho_x;

14

function dt = timestep(dx,t,x,rho)
dt = 0.9*dx/max(abs(c(rho)));

Evidently vectorization of these functions is quite easy. Partly because the PDE
is written in non-conservative form and partly because of the shock, we use a
rather fine mesh, namely 1000 equally spaced points. We measured run times
as explained in §5 and found that the average run time for LxF was 0.44s, for
LxW was 0.46s, and for SLxW was 0.49s.

In §2 we discussed a pair of equations (4),(5) of form 2 that W.E. Schiesser
[7, §3.1] solved with the method of lines. To facilitate evaluation of a semi-
analytical solution, he considers homogeneous initial values and four boundary
functions. The Schiesser program has a menu for the four data sets and
another for the three applicable methods. Schiesser uses only 21 equally spaced
points in x and reports the error in u1(1, t) for t = 0 : 1 : 10. A mesh of 21
points is rather crude for the first and second order methods of our solver. Even
so, when using LxF, the maximum error ranged from 4 × 10−4 to 3 × 10−3

for the four data sets and when using either LwW or SLxW, it ranged from
4 × 10−4 to 8 × 10−4 . To show the movement of a discontinuity more clearly,
the Schiesser program uses a mesh of 100 points and plots solution profiles for
t = 0.1 : 0.1 : 0.5. It then displays the overall behavior of u1 with a surface plot
for t = 1 : 1 : 10. Figure 1 shows profiles computed when u1(0, t) = exp(−0.1t).
There is a typical oscillation and overshoot in the solution computed with LxW
that is still present in this solution computed with SLxW, but the filter has
suppressed the oscillation and reduced the overshoot. A monotone numerical
solution is computed with LxF.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 1: u1(x, t) for t = 0.1 : 0.1 : 0.5 using SLxW in Schiesser.

Shock tube problems with Riemann data are widely used for testing PDE
solvers. The RIM program solves the three Euler equations of gas dynamics with
the two sets of initial data due to Sod and Lax that constitute the RIM1 and
RIM2 examples of [4]. Nessyahu and Tadmor use a constant time step in [4],
but RIM computes an appropriate time step as in Sod [11]. Thomas [14] uses a

15

third set of initial data for the HW 0.0.3 example studied throughout his text.
All the shock tube problems have solutions with a shock, contact discontinu-
ity, and expansion fan. We solve Thomas’ example in the shocktube program.
He discusses boundary conditions at length and then solves the PDEs with ho-
mogeneous Neumann boundary conditions. He uses 200 equally spaced mesh
points and a constant time step. Corresponding to plots in [14], shocktube
sets howfar to 0.2 and plots solution profiles for times 0:0.2:1. A menu allows
any of the four methods to be specified. It is best to write the PDEs in the
conservative form 3, but for illustrative purposes, all three forms are available.
Thomas writes the PDEs in terms of density, momentum, and energy, but plots
density, velocity, and pressure. Velocity is computed from momentum and den-
sity, and pressure is computed from the equation of state. Figures 2 and 3 show
that the nonlinear filter of SLxW has done a remarkably good job of dealing
with the oscillations that are characteristic of LxW. As exemplified by Fig. 4,
NT provides a quality solution for a system of conservation laws. As with the
traffic program, we measured the average time spent in setup and the five
calls to hpde in each run. In our experience the values displayed in Table 1 for
shocktube are representative, though often LxW is a little slower than LxF.
Filtering is not expensive despite the calculation not being vectorized. SLxW is
more expensive relative to LxW for shocktube than traffic because there are
more solution components. NT provides a better solution than SLxW, often a
much better solution, but it is substantially more expensive and, of course, is
limited to PDEs of form 3. LxF has the same qualitative behavior as NT and
can be used for all three forms. It is only first order, but it is so much faster
than NT that an equally good solution might well be computed in the same run
time by using a much finer mesh.

Method Form 1 Form 2 Form 3
LxF 0.20 0.22 0.22
LxW 0.20 0.22 0.22
SLxW 0.27 0.28 0.28
NT 0.74

Table 1: Run times (in seconds) for shocktube.

References

[1] B. Engquist, P. Lötstedt, and B. Sjögreen, Nonlinear filters for efficient
shock computation, Math. Comp., 52 (1989) 509–537.

[2] K.E. Gustafson, Partial Differential Equations and Hilbert Space Methods,
2nd ed., Wiley, New York, 1987.

[3] D. Levy and E. Tadmor, Non-oscillatory boundary treatment for staggered
central schemes, http://www.cscamm.umd.edu/~tadmor/

16

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

velocity

pressure

density

Figure 2: Result of shocktube at t = 1 using LxW and form 3.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

velocity

pressure

density

Figure 3: Result of shocktube at t = 1 using SLxW and form 3.

[4] H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyper-
bolic conservation laws, J. Comp. Phys., 87 (1990) 408–463.

[5] C.E. Pearson, Dual time scales in a wave problem governed by coupled
nonlinear equations, SIAM Review, 23 (1981) 425–433.

[6] R.D. Richtmyer and K.W. Morton, Difference Methods for Initial–Value
Problems, 2nd ed., Wiley Interscience, New York, 1967.

[7] W.E. Schiesser, Computational Mathematics in Engineering and Applied
Science, CRC Press, Boca Raton, FL, 1994.

[8] L.F. Shampine, Two-step Lax–Friedrichs method, Appl. Math. Letters, to
appear.

[9] L.F. Shampine and H.A. Watts, The art of writing a Runge-Kutta code,
Part I, pp. 257–275 in J.R. Rice, ed., Mathematical Software III, Academic,

17

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

velocity

pressure

density

Figure 4: Result of shocktube at t = 1 using NT and form 3.

New York, 1977, and The art of writing a Runge-Kutta code, II, Appl.
Math. Comp. 5 (1979) 93–121.

[10] W. Shyy, M.-H. Chen, R. Mital, and H.S. Udaykumar, On the suppres-
sion of numerical oscillations using a non-linear filter, J. Comp. Phys., 102
(1992) 49–62.

[11] G.A. Sod, A survey of several finite difference methods for systems of non-
linear hyperbolic conservation laws, J. Comp. Phys., 27 (1978) 1–31.

[12] A. Stanoyevitch, Introduction to Numerical Ordinary and Partial Differen-
tial Equations Using MATLAB, Wiley, New York, 2005.

[13] R.D. Swope and W.F. Ames, Vibrations of a moving threadlne, J. Franklin
Inst., 275 (1963) 36–55.

[14] J.W. Thomas, Numerical Partial Differential Equations Finite Difference
Methods, Springer, New York, 1995, and Numerical Partial Differential
Equations Conservation Laws and Elliptic Equations, Springer, New York,
1999.

18

